

Original research

Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: an individual patient data meta-analysis

Ferenc Emil Mózes ^(D), ¹ Jenny A Lee, ² Emmanuel Anandraj Selvaraj, ^{1,3,4} Arjun Narayan Ajmer Jayaswal,¹ Michael Trauner (10, 5) Jerome Boursier (10, 6,7) Céline Fournier,⁸ Katharina Staufer,^{5,9,10} Rudolf E Stauber,¹¹ Elisabetta Bugianesi ⁽¹⁾, ¹² Ramy Younes ⁽¹⁾, ¹³ Silvia Gaia,¹² Monica Lupșor-Platon,¹⁴ Salvatore Petta ⁽¹⁾, ¹⁵ Toshihide Shima,¹⁶ Takeshi Okanoue,¹⁶ Sanjiv Mahadeva ⁽¹⁾, ¹⁷ Wah-Kheong Chan,¹⁷ Peter J Eddowes,^{18,19} Gideon M Hirschfield,²⁰ Philip Noel Newsome ⁽¹⁾, ^{18,21,22} Vincent Wai-Sun Wong (a), ²³ Victor de Ledinghen, ^{24,25} Jiangao Fan, ²⁶ Feng Shen, ²⁶ Jeremy F Cobbold, ^{3,4} Yoshio Sumida, ²⁷ Akira Okajima, ²⁸ Jörn M Schattenberg, ²⁹ Christian Labenz (b), ²⁹ Won Kim, ³⁰ Myoung Seok Lee, ³¹ Johannes Wiegand (b), ³² Thomas Karlas (b), ³² Yusuf Yilmaz (b), ^{33,34} Guruprasad Padur Aithal (b), ^{19,35} Naaventhan Palaniyappan, ^{19,35} Christophe Cassinotto ⁽¹⁾, ³⁶ Sandeep Aggarwal, ³⁷ Harshit Garg,³⁷ Geraldine J Ooi (10, 38 Atsushi Nakajima (10, 39 Masato Yoneda,³⁹ Marianne Ziol,⁴⁰ Nathalie Barget,⁴¹ Andreas Geier **(a)**,⁴² Theresa Tuthill,⁴³ M. Julia Brosnan,⁴³ Quentin Mark Anstee,⁴⁴ Stefan Neubauer,¹ Stephen A. Harrison,¹ Patrick M Bossuyt,² Michael Pavlides **(b)**,^{1,3,4} the LITMUS Investigators

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/ 10.1136/gutinl-2021-324243).

For numbered affiliations see end of article.

Correspondence to

Dr Michael Pavlides, Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK; michael.pavlides@cardiov.ox. ac.uk

Received 28 January 2021 Revised 23 April 2021 Accepted 29 April 2021 Published Online First 17 May 2021

Check for updates

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Mózes FE, Lee JA, Selvaraj EA, et al. Gut 2022;71:1006-1019

bsg

ABSTRACT

Objective Liver biopsy is still needed for fibrosis staging in many patients with non-alcoholic fatty liver disease. The aims of this study were to evaluate the individual diagnostic performance of liver stiffness measurement by vibration controlled transient elastography (LSM-VCTE), Fibrosis-4 Index (FIB-4) and NAFLD (non-alcoholic fatty liver disease) Fibrosis Score (NFS) and to derive diagnostic strategies that could reduce the need for liver biopsies.

Design Individual patient data meta-analysis of studies evaluating LSM-VCTE against liver histology was conducted. FIB-4 and NFS were computed where possible. Sensitivity, specificity and area under the receiver operating curve (AUROC) were calculated. Biomarkers were assessed individually and in sequential combinations.

Results Data were included from 37 primary studies (n=5735; 45% women; median age: 54 years; median body mass index: 30 kg/m²; 33% had type 2 diabetes; 30% had advanced fibrosis). AUROCs of individual LSM-VCTE, FIB-4 and NFS for advanced fibrosis were 0.85, 0.76 and 0.73. Sequential combination of FIB-4 cut-offs (<1.3; \geq 2.67) followed by LSM-VCTE cut-offs (<8.0; \geq 10.0 kPa) to rule-in or rule-out advanced fibrosis had sensitivity and specificity (95% CI) of 66% (63-68) and 86% (84-87) with 33% needing a biopsy to establish a final diagnosis. FIB-4 cut-offs (<1.3; \geq 3.48) followed by LSM cut-offs $(<8.0; \geq 20.0 \text{ kPa})$ to rule out advanced fibrosis or rule in cirrhosis had a sensitivity of 38% (37–39) and specificity of 90% (89-91) with 19% needing biopsy.

Significance of this study

What is already known on this subject?

- Patients with non-alcoholic fatty liver disease (NAFLD) and advanced fibrosis (F3-4) are at risk of disease progression and adverse clinical outcomes.
- Non-invasive tests with predefined cut-offs are used as screening biomarkers to identify those at low risk of advanced fibrosis who can be safely managed in primary care.
- Liver biopsy is still needed in secondary care to further identify those with cirrhosis who would benefit from surveillance for hepatocellular cancer and screening for oesophageal varices.

Conclusion Sequential combinations of markers with a lower cut-off to rule-out advanced fibrosis and a higher cut-off to rule-in cirrhosis can reduce the need for liver biopsies.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome with high prevalence worldwide.¹ Most patients remain asymptomatic for long periods of time (years/decades) with slowly progressive disease, but

